A Topologically Based Framework for 3-D Basin Modeling
نویسندگان
چکیده
T hree-dimensional (3-D) basinwide simulation of generation, migration, and accumulation of hydrocarbons has vast potential as an uncertaintyand riskassessment tool in petroleum exploration. To fulfill this potential, several challenges have to be addressed, including the realistic modeling of the evolution of complex geologic structures such as salt diapirs and fault motion. In this chapter, we describe a novel architecture that we have designed and implemented, which specifically addresses technical challenges such as 3-D representation of geologic models, meshing, parallel computing, and visualization of the massive amount of data involved in these simulations. The core of this architecture is a 3-D topological framework for the representation of evolving geologic structures. This enables numeric simulation of geologic processes undergoing large deformations in sedimentary basin and lithosphere. In this framework, the topology (or informally, connectivity) is separated from the geometry of the geologic models, making it possible to update the geometry without altering the model topology. A mesh is treated as a possible realization of the geometric model and hence as an attribute of the topology. This architecture greatly facilitates the automatic meshing and remeshing required for large deformations such as those associated with the formation and evolution of salt diapirs. In addition, this architecture was designed to consider the geometry of geologic elements in the partitioning of the computational domain, and thus, it is suitable to the solution of partial differential equations in parallel. This is beneficial because of the large computational resources required to solve numerically the equations governing heat and fluid-transport processes in sediments.
منابع مشابه
A Topologically-based Framework for Three-dimensional Basin Modeling
Three-dimensional basin-wide simulation of generation, migration and accumulation of hydrocarbons has vast potential as an uncertainty and risk assessment tool in petroleum exploration. In order to fulfill this potential, several challenges have to be addressed including the modeling of the evolution of complex geological structures such as salt diapirs and fault motion. In this paper, we descr...
متن کاملWater Resources Management in the South of Kerman Province Using the System Dynamics Model
Integrated water resources management is recognized as one of the main needs of any society due to population growth and technological advancement. To implement integrated water resources management, modeling of this system is essential. On the other hand, water resources systems are highly complex and affected by various factors that are very difficult to identify and determine their role in w...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملA Multi-Formalism Modeling Framework: Formal Definitions, Model Composition and Solution Strategies
In this paper, we present a multi-formalism modeling framework (abbreviated by MFMF) for modeling and simulation. The proposed framework is defined based on the concepts of meta-models and uses object-orientation to overcome the complexities and to enhance the extensibility. The framework can be used as a basis for modeling by various formalisms and to support model composition in a unified man...
متن کاملBlock meshes: Topologically robust shape modeling with graphs embedded on 3-manifolds
We present a unifying framework to represent all topologically distinct shapes in 3D, from solids to surfaces and curves. This framework can be used to build a universal and modular system for the visualization, design, and construction of shapes, amenable to a broad range of science, engineering, architecture, and design applications. Our unifying framework uses 3-space immersions of higher-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003